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Background

CATs in heterogeneous population

People may interpret and respond to PRO

guestions in systematically unique ways
because of:

e Demographic and cultural differences

e Different health experiences, life
circumstances, personality

In this situation, PRO scores could be biased
and not directly comparable across different
individuals or groups



Background

Computer Adaptive Tests (CATs)

e |Invariant IRT-calibrated measurement model parameters that are
applicable to all individuals in the target population

Statistical condition: Local independence

e Exchangeable items
e Exchangeable sampling units



Potential solution:

Mixture CAT to accommodate heterogeneity

e Develop CAT scoring algorithms that adjust for heterogeneity

Research aims

e Examine implications of population heterogeneity:
1. Accuracy of CAT scores (extent of bias)
2. Efficiency and coverage of item selection
3. Sensitivity in detecting longitudinal change and individual/group differences




Theoretical foundations

Zumbo’s Draper-Lindley-de Finetti (DLD) framework
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Application to CATs

Computer adaptive testing requires two conditions for “general measurement inference”:

Iltem homogeneity /
unidimensionality

1. Item homogeneity / unidimensionality
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Sample homogeneity /
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e The sampling units must be exchangeable (the items’
parameters must be invariant) so that the scores are
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Mixture CAT

Based on latent variables mixture models (LVMM)

ltem difficulty and discrimination parameters vary across latent classes that represent

heterogeneity in the population.

Health
construct

ltems for measuring
patient reported -
outcomes

Latent classes:
Sources of
heterogeneity

Sawatzky, R., Ratner, P. A, Kopec, J. A, & Zumbo, B. D. (2012). Latent variable mixture models: A promising approach for the
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Mixture CAT

Accommodating population heterogeneity
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Objectives

To examine the potential of using latent variable mixture models (LVMMs) to
estimate heterogeneity-adjusted “mixture CAT” scores

To compare mixture CAT and non-mixture CAT scores to true scores.




Methods




Methods

IRT mixture model simulation study based on item parameters obtained from real data.

Fit a LVMM to original data

Use LVMM to generate heterogeneous datasets

Fit a one-class unidimensional IRT model to the generated data

Apply non-mixture and mixture CATs to the generated data

Compare non-mixture and mixture CAT scores to true scores




Fit a LVMM to original data

ltem bank measuring daily activities

e 39 items measuring the ability to perform common daily activities
e One of the item banks of the CAT-5D-QOL (Kopec et al., 2006)

Sample

e Adults from two rheumatology clinics (N = 340)
e Adults on a joint replacement surgery waiting list (N = 331)
e Stratified random community sample (N = 995)

Statistical model

e A 2-class mixture of Samejima’s 2-parameter Graded Response Model (GRM)
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Fit a LVMM to original data

MIXTURE
OF THE
GRADED
RESPONSE
MODEL

Example items

Need for help with  _
getting around the
house

Difficulty performing N
normal work or other N
daily activities

Limitations in
participationin -
strenuous leisure
activities

— = Represents the conditioning of discrimination parameter
(a) foritemsy;-; ;on latent class variable X, k=1, ...,

-=-==> Difficulty parameters () for c — 1 response categories per

item conditioned on latent class variable X, k=1, ..., K.

activities

Latent

61,k
Daily

X

class



Generate heterogeneous data

100 datasets (of N=1,000 each) were generated using
* Parameters based on the IRT mixture model

* Randomly-generated normally-distributed “true-theta scores”

Fit a one-class IRT model to the generated data

2-parameter GRM (ignores sample heterogeneity)
Parameter estimates and predicted scores were saved.



Fit a one-class IRT model to the generated data
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Apply and compare non-mixture and mixture CAT

Apply CAT tO the * Mixture CAT (based on LVMM parameters)
ge ne rated d ata e Conventional CAT (based on 1-class GRM parameters)

e Standard error <= 0.20
e Maximum number of items: 10

CAT stopping rules

* The items that were applied
Saved d ata * The CAT-predicted theta scores for each individual
* The CAT-predicted information for each individual

Resu Its e Comparison of mixture and non-mixture CAT scores to true scores




Results




Global fit of the LVMM model

Class proportions?

Model P BIC LL ratio?! Entropy

Class 1 Class 2
1 class 192 76390.31
2 classes 385 74064.00 3143.76 0.84 0.65 0.35

N =1,662. P = number of model parameters. BIC = Bayesian Information Criterion. LL = log likelihood
! Likelihood ratio of 1 and 2 class models. Statistical significance was confirmed using a bootstrapped likelihood
ratio test with simulated data. > Based on posterior probabilities.

* A relative improvement in model fit was obtained when 2 classes were specified.

* The sample is not homogeneous with respect to a unidimensional structure for the
daily activities items.



Description of latent classes

Variables Class 1 Class 2 OR (95% Cl)
Gender = female 59.7% 62.3% 1.0 (0.8-1.3)
Age (10 yr increments) (means(sd)) 5.3(1.6) 6.3(1.4) 0.8(0.7-0.8)*
Has a medical problem 78.9% 96.0% 2.6 (1.5-4.5)*
Has osteo-arthritis 26.0% 56.3% 2.2 (1.7-2.7)*
Has rheumatoid arthritis 24.2% 65.1% 1.1 (0.8-1.5)
Uses one medication 24.8% 34.9% 1.3 (0.9-2.0)
Uses two or more medications 45.8% 69.7% 1.6 (1.1-2.4)*
Has been hospitalized during the past year 16.7% 27.6% 1.2 (0.9-1.6)
Self-reported health status 2.5(1.1) 2.9(1.0) 1.1(1.0-1.3)*

(1 = excellent; 5 = very poor) (mean (sd))

Nagelkerke’s R2 = 21.0%. OR = adjusted odds ratio comparing class 2 to class 1. *p>0.05.

People in class 2 are relatively older, more likely to have a chronic condition,
and more likely to use two or more medications.
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CAT-predicted scores

lgnoring heterogeneity (based on 1-class GRM)

CAT-Predicted Score
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Mixture CAT-predicted scores

Adjusting for heterogeneity (based on 2-class LVMM)
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Discussion

The challenge of population heterogeneity

People may not interpret and respond to questions about their health and quality
of life in the same way.

Unaccounted for heterogeneity could be a source of measurement error.

Potential solution

Mixture CATs based on LVMMs could be used to adjust PRO scores in
heterogeneous populations, leading to improved:

accuracy of CAT-predicted PRO scores

efficiency and coverage of item selection



Discussion

Mixture CATs require reliable prediction and replication of latent classes

Current and ongoing research

1. Real data and simulation studies on latent class prediction

2. LVMM calibration of existing item banks

3. Comparative evaluation of mixture versus non-mixture CATs:
- Efficiency and coverage of item selection

- Sensitivity in detecting longitudinal change and individual/group differences
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